Gen AI Developer Week 1 — Day 4

Sai Chinmay Tripurari
4 min read2 days ago

--

Visualization is a powerful way to understand and communicate data, and Matplotlib is the go-to Python library for creating stunning and informative visualizations. From simple line plots to complex multi-plot figures, Matplotlib provides the flexibility and tools to bring data to life. As part of my Generative AI Developer Week journey, this article explores how Matplotlib empowers developers to analyze trends, share insights, and prepare visualizations that complement AI and machine learning projects.

Let’s first install pandas using the below pip command installation.

# Install matplotlib using the below command
pip install matplotlib

Now lets import matplotlib and get started for this day!

import matplotlib.pyplot as plt

Key Concepts — Basic Plot

# Basic Plot

x = [1, 2, 3, 4, 5]
y = [10, 20, 25, 30, 35]

plt.plot(x,y)
plt.title("Basic Line Plot")
plt.xlabel("X-axis")
plt.ylabel("Y-axis")
plt.show()
Basic Plot

Key Concepts — Scatter Plot

# Scatter Plot

x = [5, 7, 8, 7, 2, 17, 2, 9]
y = [99, 86, 87, 88, 100, 86, 103, 87]

plt.scatter(x, y, color='red')
plt.title("Scatter Plot Example")
plt.xlabel("X-axis")
plt.ylabel("Y-axis")
plt.show()
Scatter Plot

Key Concepts — Bar Plot

# Bar Chart

categories = ["A", "B", "C", "D"]
values = [3, 7, 8, 5]

plt.bar(categories, values, color='blue')
plt.title("Bar Chart Example")
plt.xlabel("Categories")
plt.ylabel("Values")
plt.show()
Bar Plot

Key Concepts — Histogram Plot

# Histogram Plot

data = [22, 87, 5, 43, 56, 73, 55, 54, 11, 20, 51, 5, 79, 31, 27]

plt.hist(data, bins=5, color='green', edgecolor='black')
plt.title("Histogram")
plt.xlabel("Bins")
plt.ylabel("Frequency")
plt.show()
Histogram Plot

Key Concepts — Pie Chart Plot

# Pie Chart Plot

sizes = [15, 30, 45, 10]
labels = ["A", "B", "C", "D"]
colors = ["gold", "yellowgreen", "lightcoral", "lightskyblue"]

plt.pie(sizes, labels=labels, colors=colors, autopct="%1.1f%%")
plt.title("Pie Chart Example")
plt.show()
Pie Chart

Task 1: Line Plot

# Create a line plot showing the trend of monthly expenses for 6 months: 
# [200, 250, 270, 300, 320, 310].
expenses = [200, 250, 270, 300, 320, 310]
months = ["Jan", "Feb", "Mar", "Apr", "May", "Jun"]

plt.plot(months, expenses, marker="o")
plt.title("Monthly Expenses")
plt.xlabel("Months")
plt.ylabel("Expenses ($)")
plt.show()
Task 1 Line Chart

Task 2: Scatter Plot

# Visualize the relationship between students study hours and their test scores:
# Hours: [2, 3, 4, 5, 6, 7]
# Scores: [50, 55, 65, 70, 80, 85]
hours = [2, 3, 4, 5, 6, 7]
scores = [50, 55, 65, 70, 80, 85]

plt.scatter(hours, scores, color = "purple")
plt.title("Study Hours vs Test Scores")
plt.xlabel("Study Hours")
plt.ylabel("Test Scores")
plt.show()
Task Scatter Plot

Task 3: Bar Chart

# Create a bar chart showing sales data for four products:
# Products: ["Product A", "Product B", "Product C", "Product D"]
# Sales: [150, 200, 250, 180]
products = ["Product A", "Product B", "Product C", "Product D"]
sales = [150, 200, 250, 180]

plt.bar(products, sales, color="orange")
plt.title("Product Sales")
plt.xlabel("Products")
plt.ylabel("Sales ($)")
plt.show()
Task Bar Chart

Task 4: Histogram

# Generate a histogram for ages of a group:
# Ages: [21, 22, 23, 24, 25, 22, 21, 23, 24, 25, 23, 24, 22, 21].
ages = [21, 22, 23, 24, 25, 22, 21, 23, 24, 25, 23, 24, 22, 21]

plt.hist(ages, bins=5, color="red", edgecolor="black")
plt.title("Age Distribution")
plt.xlabel("Age Groups")
plt.ylabel("Frequency")
plt.show()
Task Histogram

Task 5: Pie Chart

# Create a pie chart showing market share percentages of 4 companies:
# Companies: ["Company A", "Company B", "Company C", "Company D"]
# Shares: [40, 25, 20, 15]
shares = [40, 25, 20, 15]
companies = ["Company A", "Company B", "Company C", "Company D"]
colors = ["gold", "blue", "green", "red"]

plt.pie(shares, labels=companies, colors=colors, autopct="%1.1f%%")
plt.title("Market Share")
plt.show()
Task Pie Chart

Practice Task Challenges

  1. Use real-world data (e.g., from a CSV file) to create at least two visualizations.
  2. Combine multiple plots into a single figure using plt.subplot.

Happy Learning!😊.. For any questions or support, feel free to message me on LinkedIn.

--

--

Sai Chinmay Tripurari
Sai Chinmay Tripurari

Written by Sai Chinmay Tripurari

Software Developer | ReactJS & React Native Expert | AI & Cloud Enthusiast | Building intuitive apps, scalable APIs, and exploring AI-driven solutions.

No responses yet